Lecture 4-1

Lyapunov Analysis on Networks

Quote of the day

"Television is something the Russians invented to destroy American Education." Erdős

Lyapunor (2 nd method) method is a very general & powerful machinery
to check the stability of equilibria for dynamical systems described
1 life aution equations of the torn
by orallog alffective quarter $f : \mathbb{R}^n \to \mathbb{R}^n$ $\vec{x} = f(x)$ $f : \mathbb{R}^n \to \mathbb{R}^n$ $f : \mathfrak{P}^n \to \mathbb{R}^n$
typically assemed to be
differentiable
An equilibrium to this dynamical system is any x S.t.
X(t) = X + X(t) = x then $X(t) = X + t/t$
I had to sets under the notion of
This idea can be expended to the file" if once
invariance SZER is invariant for X(t)E() # \$7. T.
$f(\bar{x}) = 0$, that of $x(t) = n$, This idea can be extended to sets under the notion of This idea can be extended to sets under the notion of invariance $\Omega \subseteq \mathbb{R}^n$ is invariant for $f:\mathbb{R}^n \to \mathbb{R}^n$ if once $x(\bar{t}) \in \Omega$ for some \bar{t} , then $x(t) \in \Omega$ t $t \neq \bar{t}$.
this is called
forward invariance
Now x = f(x) when initialized from some xoElk, can cheate
forward invariance Now, $\dot{x} = f(x)$ when initialized from some $x_0 \in \mathbb{R}^n$, can create a very complicated trajectory $x(t) - but$ if it happens that

ve can come up with some scalar function of x, a counter, a summizing quartity, that qualitatively captures what the system is doing, then we will be grateful. More formally a Lyapunor function for an equilibrium x of f, i a real-valued continuous function on some SER" containing \overline{x} s.t: $V(\overline{x}) = 0$, V(x) > 0 $\forall x \in \Omega, x \neq \overline{x}$ $V(x) = \nabla V'f(x) \leq 0 \quad \forall x.$ we can also the value of V along any trajectory contained in Ω never increases. AV(x)relax this so. that x is the unique minimum Point of V //(Xo) d V(x) = V $\rightarrow z_1$ To a $\sqrt{2} \nabla \sqrt{4} \exp(-\frac{1}{2} \exp(-\frac{1}{$ Sx V(x) × V(x0) S $V: \mathbb{R} \to \mathbb{R}$

Note that if V(x) = 0 for some $x \neq \overline{x}$, then asymptotic stability of \overline{x} does not follow! But now the question is where does $\chi(t)$ go ?!

La Salle's Invariance : Let be bounded & $V(x) \leq 0$. Then $x(t) \rightarrow largest invariant set in <math>\{x \in G_s \mid V(x) = 0\}$. Note that in this case you don't even need positivity of V! > we have to somehow ensure boundedness! These results have a variety of extensions, including' to switches systems.

If $\dot{x} = f_{\sigma}(x)$ & admite a (radially unbounded) common Lyapuror function, that es: $\begin{bmatrix} \nabla V & f_{\sigma}(x) < 0 & \forall x \neq 0 & \forall \sigma \\ V(x) > 0 & \forall x \neq 0 & y \neq 0 &$

then $\chi(t) \rightarrow 0$ (globally). Similarly if the largest invariant set for all for is the same & the solution remains bounded,

Okay - now we have this powerful mathematical that we will
apply to Networked system - in order to get a harry of this
let us consider
$$\overline{x} = -f(G) \times f$$
 dee if we can apply
the Lyapuror setup. Well, what should one Lypuror function be?
Let us trul
 $V(z) = \frac{1}{2} z^T z$
Then $V(z) = \frac{1}{2} (\overline{x}^T z + \overline{z} \overline{z}) = \frac{1}{2} (-\overline{x}^T f(G) z - \overline{z}^T f(G) \times) = -\overline{z}^T f(G) \times$
 $\chi = \frac{1}{2} (\overline{x}^T z + \overline{z} \overline{z}) = \frac{1}{2} (-\overline{x}^T f(G) z - \overline{z}^T f(G) \times) = -\overline{z}^T f(G) \times$
Then $V(z) = \frac{1}{2} (\overline{x}^T z + \overline{z} \overline{z}) = \frac{1}{2} (-\overline{x}^T f(G) z - \overline{z}^T f(G) \times) = -\overline{z}^T f(G) \times$
 $\chi = \frac{1}{2} (\overline{x}^T z + \overline{z} \overline{z}) = \frac{1}{2} (-\overline{x}^T f(G) z - \overline{z}^T f(G) \times) = -\overline{z}^T f(G) \times$
 $\chi = \frac{1}{2} (\overline{x}^T z + \overline{z} \overline{z}) = \frac{1}{2} (-\overline{x}^T f(G) + \overline{z} - \overline{z}^T f(G) \times) = -\overline{z}^T f(G) \times$
 $\chi = \frac{1}{2} (\overline{x}^T z + \overline{z}^T z) = \frac{1}{2} (-\overline{x}^T f(G) + \overline{z} - \overline{z}^T f(G) \times) = -\overline{z}^T f(G) \times$
 $\chi = \frac{1}{2} (\overline{x}^T z + \overline{z}^T z) = \frac{1}{2} (-\overline{z}^T f(G) + \overline{z} - \overline{z}^T f(G) \times) = 0$
 $\chi = \frac{1}{2} (\overline{z}^T z + \overline{z}^T z) = \frac{1}{2} (-\overline{z}^T f(G) \times \overline{z} - \overline{z}^T f(G) + \overline{z} + \overline{z}^T x) = 0$
 Hight be good but of course $V(x) \neq 0$ for $\overline{z} \in A$ if $\frac{4}{2} \times (0, 0) \neq 0$.
Might be good to interpret what is $V(x)$ meaning?
 χ we consider $f(K_n) = n \mathbb{I} - 1 + 1$ then $\overline{z}^T f(K_n) = n \overline{x} - (4\overline{x})^T$
but $\frac{1}{4t} (4\overline{x}^T x) = 4\overline{x} = 4\overline{t} (-f(G) \times) = 0$ for $4\overline{t} x$ is a constant

~ $V(x) = \frac{1}{2}x^{T}x = \frac{1}{2n}(x^{T}L(k_{n})x + (\frac{1}{2}x)^{2})$ So x'' that minimize V(x) is the same x for which $x^T \mathcal{L}(K_n) x = 0 \longrightarrow x \in \mathbb{A}^d$ But we already know this! The power of Lyopwor is that y we have some "nonlinearly" Let us say that we have $\chi = -\mathcal{L}(G_{\sigma})\chi$ where t is the "mode" of the graph . . . 0____0 Gon 402 Gr. Lyapnov analysis aldons us to analyze conserves on switching & time varying vet works!